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We investigate the constraints placed on the image projection of a planar object
having local reflectional symmetry. Under the affine approximation to projection,
we demonstrate an efficient (low-complexity) algorithm for detecting and verify-
ing symmetries despite the distorting effects of image skewing. The symmetries
are utilized for three distinct tasks: first, determining image back-projection up
to a similarity transformation ambiguity; second, determining the object plane
orientation (slant and tilt); and third, as a test for non-coplanarity amongst a
collection of objects. These results are illustrated throughout with examples from
images of real scenes.
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78 D. P. Mukherjee and others

1. Introduction

The representation and recognition of shapes by computer has numerous appli-
cations: as a step towards automating processes such as inspection; acquisition of
objects from a conveyor belt or container; reconnaissance; and, navigation by an
autonomous system. Also, such work can potentially contribute to understand-
ing one of the most exquisite and effortless of human competences: the rapid
recognition of familiar shapes even when they are partially occluded by others,
when their surface colour or texture is unfamiliar, and when they are viewed
from a wide range of vantage points. From a very early age, we can learn new
classes of shapes, learn to discriminate subclasses, and then mobilize those new
representations to effect recognition.

Understanding how to represent and recognize shapes has, however, proved
to be a remarkably difficult task, both for computer vision and for perceptual
psychology. So much so, that the current state of the art is that only limited
classes of shapes can be recognized reliably from a limited range of poses. To
date, perceptual psychology has been of limited usefulness, for though theories
of shape abound (Beiderman 1987; Corballis 1988), they are too vaguely formu-
lated to be implemented in a computer recognition system. On the other hand,
most computer vision approaches to shape have either emphasized gross shape
characteristics (for example, low-order moments or the first few coefficients of the
Fourier or other transform of the contour function of the shape), or have relied on
highly localized features, such as an estimate of points of high curvature along the
bounding contour. Gross shape representations have insufficient discriminatory
power and are sensitive to occlusion, while very local representations are subject
to measurement noise that is unavoidable in practice.

The most advanced representation and recognition techniques developed to
date in computer vision have explored representations intermediate between these
extremes, and have exploited one or more of: relational constraints between parts
of a shape, prior models, symmetry properties of the shape, or affine/projective
invariance. The relational constraints approach relies upon precisely known al-
gebraic relationships between different parts of a shape and has only been ex-
plored for the case of polyhedra, albeit classes of polyhedra defined parametrically
(Grimson 1990; Reid 1991). Model-based recognition, even for non-polyhedral
shapes, has enjoyed some success, but leaves aside the question of how recogni-
tion is effected when models are not available (Grimson 1990; Lowe 1985; Reid
1991). The present paper is a contribution to the symmetry and affine/projective
invariance approaches to shape representation.

Many important classes of shapes, from faces and leaves through to manufac-
tured items such as many stamped metal parts and profiles of aeroplanes and
buildings exhibit one or more symmetries. The essential idea of a symmetry is
a motion (Field & Golubitsky 1992): ‘suppose you have an object and pick it
up, move it around and set it down. If it is impossible to distinguish between
the object in its original and final positions, we say that it has a symmetry’.
Within the plane, symmetry comprises reflections, rotations and translations, in
which latter case symmetry corresponds to pattern repetition. The line of think-
ing encapsulated by the quotation leads inexorably to modelling symmetry using
the operations of group theory (Weyl 1952), a point to which we return when
discussing affine/projective invariant representations of shape. However, requir-
ing the transformed object to be ‘impossible to distinguish’ from the original is
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far too restrictive both for computer vision and for human perception. Real ob-
jects such as faces, pears, wrenches and the outlines of fish (Strachan 1993) are
only approzimately symmetric and, more significantly, the shape only exhibits
symmetries locally between segments of a shape or pattern.

Over the past thirty years, researchers in computer vision have explored a num-
ber of aspects of symmetry to generate symbolic representations of shape, cul-
minating in the systems reported by Blum & Nagel (1978) and Connell & Brady
(1987) and, more recently, by Rom & Medioni (1993). The first exploration of
local support for symmetry was by Blum (1973) in his study of representations
of biological shapes to effect recognition, determine abnormalities and monitor
growth. The idea of local symmetry was put on a more solid mathematical foot-
ing by Giblin & Brassett (1985), who defined the symmetry set of a shape as
the locus of the centres of all circles bitangent to a shape’s bounding contour.
A number of algorithms have been developed for computing the loci of local
symmetries of shapes, particularly reflectional (Brady & Assada 1984; Scott et
al. 1989) and rotational (Fleck 1985) symmetries, and they have been demon-
strated to work reliably on a range of shapes, generating representations useful
for recognition.

However, all such algorithms and representations share a severe limitation:
symmetry is not preserved under skew, corresponding to the shape being viewed
other than in a fronto-parallel plane. Simply stated, symmetry axes computed in
an image of a shape taken from a non-fronto-parallel vantage point are not in gen-
eral the transformed fronto-parallel symmetry axes. Despite this mathematical
inconvenience, ‘skewed symmetries’ (that is, reflectional symmetries viewed from
a non-fronto-parallel vantage point) such as those shown in figure 1 strongly sug-
gest actual symmetries and constrain the plane in which they are perceived to lie.
The mathematical fact that the skew symmetry may be an accident of projection
is evidently discounted. Indeed, Wagemans (1993) has recently provided evidence
that skewed symmetry is a non-accidental property of a shape that the human
visual system exploits. Kanade (1981) was the first to analyse mathematically
symmetries skewed by image projection, and proposed heuristics to interpret a
skew symmetry as a real symmetry viewed from some (unknown) direction, which
he represented using gradient space. Van Gool et al. (1992) proposed arc length
space (ALS) to extract affine symmetry information using semi-differential invari-
ants.

Notwithstanding the cogency of skewed symmetric shapes, and the informa-
tion they seem to present about the pose (rotation and translation relative to
the camera) of the shape, the fact remains that symmetry is not invariant un-
der projection. This has recently persuaded a number of authors to abandon
temporarily such representations to explore projective and affine invariants of
two-dimensional shapes (Mundy & Zisserman 1992; Rothwell et al. 1992a). Like
symmetry, invariance is also normally formalized using the mathematics of group
theory, particularly Lie group theory. Systems have been developed that exploit
a variety of invariants to recognize overlapped shapes viewed from a variety of
poses. This substantial progress has been bought at the cost of regressing shape
representations, now in a ‘canonical frame’, to descriptions invariant of pose.

In essence, the present paper is a step towards reconciling symmetry and invari-
ance. For the present, we concentrate on local reflectional symmetries of smoothly
curved planar objects, though the methods are equally applicable to polygonal ob-
jects, and in other work we have extended the ideas to certain three-dimensional

Phil. Trans. R. Soc. Lond. A (1995)
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80 D. P. Mukherjee and others

Figure 1. Examples of skewed symmetry. The objects differ in the number and disposition of the
symmetry axes: (a) each object has a single bilateral symmetry; (b) the object has two orthogonal
bilateral symmetries; and (c) the object has three bilateral symmetries, but the symmetry axes
are not orthogonal. In each case the symmetry is global, and on the object lines between points
related by the reflectional symmetry are orthogonal to the axis of reflection. However, in the
image these lines and the axis are not orthogonal, in general, but skewed.

shapes (Fawcett et al. 1993). Suppose then that a planar object has a bilat-
eral symmetry; how does this constrain its image projection? If the two ‘sides’
of the contour have a mirror symmetry, then one can be transformed onto the
other by a reflection. A reflection is a particular type of affine transformation.
We assume that the projection between the object and image planes can also be
approximated by an affine transformation. It is easy to show, for example using a
Taylor-series expansion of the projection equations of a pinhole camera, that this
is a very good approximation provided the field of view is small, and the range
of depths encompassing the object is at least an order of magnitude less than
the distance of the object from the camera. This is satisfied in many practical
cases. Extensions to (an exact) projective transformation for planar objects, and
to symmetries of three-dimensional objects are discussed in §5.

Consequently, since affine transformations form a group, the transformation
between the two sides of the contour in the image is affine. This immediately
provides an algorithm, albeit one that is computationally expensive, for detect-
ing possible symmetries: if two image contours can be mapped onto each other by
an affine transformation (six degrees of freedom), then the object could have had
a reflectional symmetry. A key result of the present paper is given in §2, where
it is shown that the image transformation is actually a subset of the affine trans-
formations with only three degrees of freedom. This, and the use of affine index
functions, is used to develop an efficient algorithm for detecting and verifying
symmetries (§3).

The mathematical framework is established in §2. It is shown that a single
symmetry is sufficient to unskew the back-projection, to give a one-parameter
family of symmetric shapes that could have given rise to the image. A second
coplanar symmetry is sufficient, in general, to uniquely determine the aspect
ratio of the plane. This determines the back projection up to a similarity trans-
formation (translation, rotation and isotropic scaling). This is achieved without
any knowledge of the intrinsic camera parameters, an important consideration in
practice since the automatic calibration of camera intrinsic parameters is a poorly
conditioned nonlinear problem (Tsai 1986). If, however, the camera aspect ratio
is known, the back projection determines the slant (up to a two-fold ambiguity,
often referred to as the Necker ambiguity) and tilt of the object plane. Finally, a
test for non-coplanarity is given for two symmetric objects from a single image.

Phil. Trans. R. Soc. Lond. A (1995)
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Figure 2. v and 4 are the affine images of two corresponding sides of a planar object, I' and I" re-
spectively, with bilateral symmetry. Affine transformations preserve parallelism, so lines joining
corresponding points in the image, for example the lines aa’ and bb', are parallel. Affine trans-
formations also preserve length ratios on parallel lines. In particular midpoints are preserved,
so the imaged symmetry axis passes through the midpoints of aa’ and bb'.

Throughout the paper, results are shown from an implementation of the the-
ory outlined in §§2 and 3. The reader may care to pause at this point to view
figures 14, 15; figures 16, 18; and figures 19, 20, which show typical results using
the implemented program.

2. Mathematical framework

In this section we study the constraints on the transformation between two im-
age contours if they are the projections of corresponding sides of a planar object
with bilateral symmetry. Figure 2 illustrates the situation under consideration:
the image contours v and 7' are the images, assumed to be affine, of two corre-
sponding sides, I' and I"" respectively, of a planar object with a bilateral (mirror)
symmetry. A key attribute of affine transformations is that they preserve paral-
lelism, so lines joining corresponding points in the image, for example the lines
aa’ and bb’, are parallel. Affine transformations also preserve length ratios on
parallel lines. In particular, midpoints are preserved, so the imaged symmetry
axis passes through the midpoints of aa’ and bb'.

(a) Image transformation

The following theorem explores the image transformation between the affine
images v and 4’ in more detail. In particular, it fixes notation that will be used
subsequently to unskew images.

Theorem 2.1. Suppose two curves v and v/, as in figure 2, are the images
of two corresponding sides of a planar object with bilateral symmetry. Suppose
further that image projection can be represented by an affine transformation.

Then the transformation between v and «' has the following properties.

Property 1. ~ and +' are related by an affine transformation. That is, if = is
a point on « then there is a point ' on v’ such that

' =Az+b, (2.1)

where A is a non-singular 2 X 2 matrix, and b is a two vector.

Property 2. The affine transformation {A,b} satisfies the following con-
straints:

(i) A2 =1;

Phil. Trans. R. Soc. Lond. A (1995)
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(ii)) |A + 1| = 0; and

(iii) |[A — 1| = 0.

Property 8. The matrix A has eigenvectors a and b (b as above) with eigen-
values +1 and —1, respectively. Vector a is parallel to the symmetry axis, vector
b is parallel to @' — x.

Property 4. The transformation has three degrees of freedom. It can be

parametrized by a,b,,b,, where

_ a ~b,(1+a)/b, b,
B I 1] 22
Property 5.  With this notation, the image (skewed) symmetry line is
(1 —a)byx + (1+ a)by — byb, = 0. (2.3)

The proof is given in appendix A. Note: the affine transformation has only
three degrees of freedom (given by a, b, b, in the statement of the theorem); and,
the theorem also applies if the original object has affine skewed symmetry, since
an affine image of an affine transformed object with bilateral symmetry has the
same properties.

(b) Back-projection

In this section we consider the extent to which we can unskew images such as
those shown in figure 1. Evidently, some of the skewed symmetries in figure 1
have only a single symmetry, in which case the best one can hope for in gen-
eral (that is, without mobilizing further knowledge) is to unskew the image to
a single-parameter family of symmetric shapes that corresponds to tilting the
symmetric shape backwards while preserving the direction of the symmetry axis.
If, on the other hand, there is more than one symmetry axis, then one might hope
to combine the information from two or more such axes to uniquely unskew the
shape. This insight is embedded in the following theorem.

Theorem 2.2. Suppose we have an (uncalibrated) image of one or more copla-
nar symmetric objects.

One symmetry. If there is only one symmetry present, the image can be back-
projected, modulo a similarity, to form a one-parameter family of symmetric
shapes that could have given rise to the image.

Two symmetries. In the case that two symmetries are present in the image,
the image can be back-projected uniquely, modulo a similarity, provided that the
two symmetry axes are neither parallel nor orthogonal (either in the image or in
space, since the camera is assumed affine).

Proof. First we give some notation for back-projections. Suppose the affine
transformation relating the object and image planes is given by

X = Uz + B, (2.4)

where x is the two-dimensional image point, X is the corresponding point in the
back-projected planar scene, B is a two-vector translation and U is the 2x 2 linear
transformation matrix with det U > 0 responsible for back-projection. It can be
shown (Blake & Marinos 1990) that the transformation U can be decomposed as

U= MR(O)P(N,T), (2.5)

Phil. Trans. R. Soc. Lond. A (1995)
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where R() is a rotation by 6, and P(),7) is a symmetric matrix:

P(\T) = R() [3 ‘1)] R(—7), (2.6)

with

R(7) = {CF)ST —sinT] '

sinT  cosT
This particular decomposition of U makes its four degrees of freedom explicit in
a way that corresponds to the processes of projection: the linear transformation U
consists of an isotropic scaling by A, a rotation about the optic axis by R(6), and
an expansion by A in the direction 7 = (cos7,sin7) (the eigenvector of P(X, 7)).
The eigenvectors of A, say a and b, back-project to vectors parallel to and
orthogonal to the symmetry axis, respectively. In the object plane, therefore, the

scalar product (Ua) - (Ub) = 0 and, consequently,

a"UTUb=0. (2.7)

The matrix V = U U is symmetric and positive definite. Let the components
of V be given by

a f
V= : 2.8
[ﬂ 7] (238)
then we have from equation (2.7)
a
(agb, azb, +ayb, ayb,) |8 =0. (2.9)
Y

This is a linear constraint on «, 3, . Two such constraints determine the ratio
a: (7. The sign is fixed by the requirement that V is positive definite, so that
trV = a+ v > 0. This is sufficient to determine A and 7, as is shown in the
following lemma.

Lemma 2.3. Theratio o : (: -y, with sign chosen so that a+~ > 0, determines
A up to a four-fold ambiguity, and T up to a two-fold ambiguity.

Note that A? is the ratio of the eigenvalues of V, and 7 is the rotation angle to
the eigendirections. From equations (2.5) and (2.6),

vV =AP(\,T). (2.10)
The trace and determinant of V give two equations for \%:
trV=a+7y=2A(1+\?),
det V = ay — % = A\])\2%.
Eliminating \? gives
2 2 2)\2
(trv)? _ (e+7)? _ (142X _ 4 (2.11)
(detV) ay—p? A2

Solving this gives A2 = {N?,1/\?} where \? = 2u — 1 + 2y/p(p—1).
Or, equivalently, A = £,/& & /p— 1, which are four solutions of the form

{N,1/X, =N, —1/N} with N = /i + v/ — L.

Phil. Trans. R. Soc. Lond. A (1995)
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The rotation angle 7 is obtained from equations (2.6) and (2.10):

5y e e

Rearranging gives

[cosv’ sinT] [a ﬁ] [COST —sinT] _ [)\2 0]‘

—sinT cosT||B | |sinT cosT 0 1
From the off-diagonal elements we obtain
—sin® 78 — cos TsinT(a — ) + cos®> 78 = 0,

from which

tan 27 = 26 . (2.13)
o=
This gives four solutions for 7. If 7* = %arctan[(23)/(a — 7)), then the four
solutions are {7* + nn/2} for n = 0,1,2,3. Two of the solutions are simply due
to a clockwise rotation, as opposed to counter-clockwise, so may be disregarded.
It is only necessary to determine whether 7 is in the first or second quadrant.
From (2.12),

B =M\ —1)cosTsinT = 2AI(A\* — 1) sin 27,

so that sgn(3/(A\* — 1)) = sgn(sin27), and if sgn(8/(A\? — 1)) > 0 then 0 <
7 < /2, otherwise 7/2 < 7 < m. Consequently, there are two solutions for 7
corresponding to the two solutions {\'?,1/\?} above for 2. [ |

This proves the lemma. Now we can return to the proof of the theorem. In
the following we take A = /i + +/u — 1. The other solutions differ only by sim-
ilarity transformations. If X\ = /i + v/p — 1, then for real solutions p > 1, and,
consequently, A > 1. Hence, sgn(/3) = sgn(sin 27) and this uniquely determines 7.

One symmetry. Equation (2.9) has a one-parameter family of solutions for
the ratio a : § : 7. Correspondingly, there is a one-parameter family of solutions
for A and 7.

Two symmetries. Two symmetries generate two constraint equations (2.9):

o
M{g
&

=0,

where

Y — [a}vb; ayby +albl a;b;}

T lalbl a2l +albl albl

Provided the matrix M is of rank two, this uniquely determines the ratio {« :
B : v} (and, consequently, from the lemma, A and 7). It can be shown that M
drops rank if any of the vectors {a’, b', a?, b?} are parallel, hence the clause in
the theorem. The optimal solution when there are more than two constraints is
discussed in §4. |

(2.14)

Phil. Trans. R. Soc. Lond. A (1995)
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3. Detecting symmetries

As shown in §2, corresponding sides I' and I" of a symmetric planar object
project to image curves y and v/, respectively. Even though the projection (I' —
and I'" — v') is by a general affine transformation, the image curves v and ' are
related by a three-dimensional subset of the (six degrees of freedom) planar affine
group. In this section we describe how these results can be utilized to detect such
image pairs efficiently.

Intra-image curve matching has much in common with the inter-image curve
matching necessary for model-based vision, and approaches developed for that
area can be used to advantage here. In particular, and this introduces the second
theme of invariants foreshadowed in the introduction, the use of invariants as
index functions avoids the cost of a six-dimensional search over transformation
parameters (Lamdan et al. 1988; Rothwell et al. 1992¢). The three stages of an
implemented algorithm are described in the following sections.

(a) Generating and matching affine invariants

Two curves that are related by an affine transformation have the same affine
invariants. The converse is not necessarily true, but invariants can usefully be
used to generate hypotheses for matching, which can subsequently be tested.
Briefly, a function I(I') of a curve I is an nvariant if I(y) = |U|*I(T'), where
«v is the image of I' (refer to figure 2) under the affine transformation as defined
in equation (2.4). The exponent w is the weight of the invariant. If w = 0 then
the invariant is absolute, otherwise it is relative. Note that in order to determine
local symmetries, the invariant must not depend on global properties of the curve.
Examples of (semi-local) affine invariants for smooth curves are given below.

Unlike model-based vision, where absolute invariants are needed, relative in-
variants suffice in this case. To see this, consider two symmetry-related curves in
the object plane. These are related by an affine transformation with determinant
—1 (since the transformation is a reflection). Consequently, affine invariants of
each side of the shape are equal modulo a sign. In the image, invariants are mul-
tiplied by |U|*, which is unknown, but which is the same for both sides. Thus,
relative affine invariants of each side have the same magnitude.

Matching on invariants can be implemented as an O(n) complexity process by
the use of hashing (where n is the number of curves) (Rothwell et al. 1992a, c). We
have implemented the simpler O(n?) algorithm, since n is small in the cases we
have experimented with. It is straightforward to implement the more complicated
algorithm.

(b) Determining the affine transformation

Having found two curves with matching invariant(s), the next stage is to de-
termine if the curves are affine related. This is achieved by extracting a number
of distinguished points on each curve, and determining an affine transformation
between these point sets. Three points are required to determine a general affine
transformation. Distinguished points are curve ‘markers’ that can be determined
before and after a transformation. A number of examples are shown in figures 3-5.
They include points preserved by projectivities (such as inflections, bitangent
contact points, ‘cast’ tangents) as well as those exclusively preserved by affinities
(such as points defined by parallel lines). Note, points are ordered by the curve,
so the correspondence problem is greatly simplified.

Phil. Trans. R. Soc. Lond. A (1995)
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Ten

en €X

Figure 3. Examples of distinguished points for a non-convex curve under affine transformations.
Points en and ex mark the entrance and exit of the concavity determined by the bitangent
line. Further distinguished points are constructed from these points: Ten is the point on the
curve which is tangent to a ray based at en (similarly for Tex and ex); h is determined by the
line parallel and furthest from the bitangent. Apart from h, these distinguished points are also
preserved by projective transformations. Examples of these points on an image curve are shown
in figure 5.

Figure 4. Affine view of spanner.

(¢) Verifying subset membership

As noted in §2, the image curves are related not by a general affine transfor-
mation (with six degrees of freedom), but by a three-parameter subspace. If the
affine transformation does not lie in this subspace, then the two curves cannot
be symmetry related. Note that if two curves are symmetry related then two
points are sufficient to determine the transformation of equation (2.2). When
more points are available, the form of the transformation is used as a constraint
(via a Lagrange multiplier) in a least-squares estimator. Details are given in § 3 e.
If the curves are affine related then one can be superimposed onto the other by
applying the computed affine transformation. An example is shown in figure 10.

(d) Affine semi-local invariants

For a non-convex curve, following Lamdan et al. (1988), we exploit concavi-
ties, by constructing a bitangent across the concavity and determining the interior
point on the concavity curve with tangent parallel to the bitangent. See figure 3.
This generates three distinguished points. This particular choice of points has the
advantage that it does not depend globally on the curve. Consequently, if part
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Figure 5. Distinguished points for edge curves extracted from the image of figure 4. The
notation for the curves P and Q is defined in figure 3.

Figure 6. Image of four objects with bilateral symmetries.

of the curve is occluded or missed because of segmentation problems, local sym-
metries can still be detected. Affine invariants are generated from the concavity
curve.

Area in the image space. This is a relative invariant. The area used is that of
the triangle defined by the three concavity distinguished points (en, ex and h).

Moments in the canonical frame. Significant concavities are mapped to a
canonical frame (Lamdan et al. 1988) consisting of an equilateral triangle with
vertices at (—1,0), (1,0) and (0, v/3) by using the affine-basis triplet points of the
concavities. The z and y moments of the concavity in the canonical frame are
used as invariant indexes.

Table 1 lists the invariant values for the objects in figure 6. These differ, in
general, by less than 2% for symmetry-related concavities. Figure 7 shows the
matched concavity pair extracted from figure 6. For the pliers, invariant values
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| 01{

Figure 7. Matched concavities (al, a2), (b1, b2), (c1, ¢2) and (d1, d2) are extracted from the

symmetric objects of figure 6.

Table 1. Affine invariant values for objects in figure 6

invariant spanner spoon hex spanner pliers
area (image space) 1064 1056 3694 3855 2719 2723 4398 3814
moment about z-axis
(canonical frame) 10.85 11.38 32.13 31.44 1861 17.13 2.57 2.03
moment about y-axis
102,15 99.71 86.17 84.41 92.72 93.83 82.59 78.82

(canonical frame)

are not consistent because of the thickness of the handles. The handles cause two
problems: first, they are rounded so that (as in the case of an extremal boundary),
in general, the surface curves projecting to the outline will be space curves and
not mirror pairs; and second, and more important in this case, the handles and

jaw are not in the same plane.

For a convex curve segment, distinguished points can be obtained from the

anti-symmetry set (Blake & Taylor 1993).

(e) Implementation and results
Image contours are extracted using a local implementation

Feature extraction.

of the Canny (1986) edge detector. Significant concavities are extracted for each
closed contour after computing a convex hull and setting a threshold on concavity
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Figure 8. Affine view of symmetric spanner.
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Figure 9. Matched concavities extracted from symmetric spanner of figure 8.

height and width. Bitangents are found via a dual space construction (Rothwell
et al. 1992a) and determine the concavity entrance (en) and exit points (ex).

Concavity matching. For each closed contour in the scene, matched concav-
ities are detected using affine invariant indexes as described in §3a. Examples
of the three points, en, ex and h, used as an affine basis are shown in figure 9.
Corresponding points in the matched concavity pair are determined from the
tracing order (clockwise or anti-clockwise) of the image contour from which con-
cavities are extracted. These point correspondences are used to determine the
affine transformation between corresponding curves.

Affine transform. The next step is to determine if the affine transformation
arises from a reflectional symmetry of the object curves, i.e. whether it lies in the
three-degrees-of-freedom subspace defined by the constraints of equation (2.2). In
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Table 2. As the accuracy of the affine transformation is improved it more closely satisfies the
constraints of equation (2.2)

(The table gives the computed A and b elements when they are calculated either: (i) directly
from three points; or (ii) via a pseudo-inverse from five points. The transformation is for the
points obtained from figure 21.)

number of affine elements solving elements calculated
points equations (2.1) and (3.2) as equation (2.2)
a1z = az1 =
a1n a2 b az1 a2z by —by(L+a)/by  —by(l—a)/bs
3 0.89 0.63 -—72.16 0.49 -0.79 158.57 0.86 0.24
5 0.77 097 -87.79 0.43 —-0.75 157.15 0.98 0.41

practice, the affine transformation determined from the three affine basis points
is not sufficiently accurate, so extra correspondences are included via a pseudo-
inverse. Two additional points, marked Ten, Tex in figures 3 and 5, are the points
of tangency to the extracted curve drawn through the cavity entrance and exit
points (these are determined from the convex hull). In straightforward notation,
equation (2.1) is rewritten as

PX =Q, (3.1)
where X is a vector formed from the elements of A and b. This is solved using a
pseudo-inverse to give X = PT(PPT)1Q. (3.2)

Table 2 demonstrates that as the number of points increases, the accurately deter-
mined affine transformation does indeed satisfy the constraints of equation (2.2).

Having determined the affine transformation, the symmetry axis is given by
(2.3). Since midpoints are preserved by affine transformations, the midpoints of
lines joining corresponding distinguished points lie on the symmetry axis, and
this provides a quick, though not as accurate, method for determining the line.

An alternative method for improving the accuracy of the affine transformation
is to minimize differences between the curve on one side and the other affine-
transformed side (so it should be identical). For example, differences of area or
the distance between corresponding points of the matched curve could be used
as a measure. This has not been implemented, but the accuracy of the affine
transformation computed from the pseudo-inverse is demonstrated in figure 10,
where one side Q is ‘reflected’ onto the other side P.

(f) Global symmetries

Clearly, a local symmetry between two concavities does not imply a global
reflectional symmetry for the whole object. For example, while the symmetric
spanner shown in figure 8 has a global reflectional symmetry, the spanner shown
in figure 4 does not. To test for global symmetry, the local symmetry line is
extended in both directions, while there is evidence that a symmetry with this
axis exists. This is the case if for each point on one side there is a corresponding
point on the other side in the direction of b (as defined in equation (2.2)) at the
same distance from the symmetry line.
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Figure 10. Qr is the image ‘reflection’ of Q onto P using an affine transformation computed
from five point correspondences for the hex spanner shown in figure 21.

Figure 11 is an affine scene containing globally, partially symmetric and non-
symmetric objects. Globally symmetric contours are correctly determined as
shown in figure 12.

4. Applications

(a) Back-projection

Here we determine the affine back-projection to the object plane using the
results of § 2. Note, back-projection does not require camera aspect ratio (or any
of the intrinsic parameters). We first give an intuitive and simple construction
for determining the back-projection and its uniqueness, which is applicable for
up to two symmetries.

Consider an image consisting of two coplanar objects with single bilateral sym-
metries. Determine the skewed symmetry axes of each object (say, by joining the
midpoints of corresponding distinguished points), and choose an origin on one of
the symmetry axes, with vector a on the axis, and b parallel to the lines join-
ing corresponding points. See figure 13. The back-projection is achieved in two
stages.

Stage one. Unskew the first object by determining the transformation that
maps a and b to the points (0,1) and (v,0) (unskewing frame). This determines
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Figure 11. Affine scene of globally, partially and non-symmetric objects.

Figure 12. Outline curves, concavity entrance and exit point for the objects in figure 11.
Symmetry lines are only drawn where the object is determined to be globally symmetric.

three of the degrees of freedom of U, including the arbitrary rotation and isotropic
scaling, but does not determine the object-plane aspect ratio. Explicitly,

u;y wuip | [ap by _ [0 w
Uy ugp | @, by| {1 0]

[0 v][a: bL]70
o-[3 o)l ul
yielding the expected one-parameter () family of solutions.

< =8 =

So,
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(URY)

(0, 0) (v, 0)

Figure 14. Affine view of two objects with superimposed guiding vectors. The vectors are
clearly not perpendicular.

Stage two. Now, v is determined by enforcing that the second object should
also be unskewed. We have:

a®uTub? =0. (4.1)
Multiplying out gives:

afar BL]TTL 0] [al 8L,
L u] o A ) v “2
which is a linear equation for »2. Note that if b! is parallel to b? (and consequently
a' is parallel to a?) then the quadratic form in (4.2) is identically zero and there
is no constraint on v. Similarly, there is no constraint if @’ is parallel to b? (and
consequently b! is parallel to a?). This occurs if the symmetry axes of both
objects are parallel or orthogonal. In this case both objects are unskewed by the
first stage.

This formulation is, of course, equivalent to § 2 b, and either can be used if there
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g

Figure 15. Unskewed image of the spanner and hex spanner of figure 14.

are two symmetries present. If there are more than two symmetries, where a least-
squared solution is required, then the above method is not easily generalizable.
However, the formulation of §2b is not restricted. Its application in a least-
squared solution is described below.

Figures 14 and 15 show examples of object pairs before and after back-
projection. The angle between the vectors a® and b® before and after are given in
table 3. Accurate back-projection requires accurate determination of these vectors
(which are the eigenvectors of the matrix A). In practice, we find that five point
correspondences and use of a pseudo-inverse, as described in §3 e, are sufficient
to determine A to a satisfactory accuracy.

Up to this point it has been assumed that each object only contributes a single
local symmetry. However, should an object contain several local symmetries then
this object alone is sufficient to determine the back-projection (provided the usual
conditions are satisfied). An example is shown in figure 16. We have taken two
local symmetries enforcing the constraint that they cannot be mutually parallel
or perpendicular. Local symmetries with guiding vectors and the matching con-
cavities are shown in figure 17. Figure 18 shows the unskewed image of the object
and table 4 demonstrates the back-projection. Slant and tilt are also determined
in this case. This is described in §4 b.

Least-squares solution. If there are more than two coplanar objects, then the
transformation is estimated using a least-squares technique. Specifically, equa-
tion (2.9) is a linear constraint on the kernel vector (a,(,~). If there are n
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Figure 16. Affine image of an object with multiple local symmetries.

Figure 17. Local symmetries and matching concavities extracted from figure 16. Note that
local symmetries considered are neither parallel nor perpendicular.

Table 3. Angles between guiding-point triplet before and after unskewing for objects in figure 14

objects spanner hex spanner
initial angle 76.4 81.9
final angle 90.0 89.9
objects, we seek the minimum of ||Mz||? subject to ||z|| = 1, where M is an x 3

matrix with each row given by equation (2.9). This is a standard problem in
linear algebra. The solution is the eigenvector of M ™M with least eigenvalue. It
is also possible to determine a covariance matrix for A and g in a similar man-
ner to Blake & Marinos (1990). A more complete treatment of image noise and
segmentation errors would weight each row of M according to a measure of its
uncertainty.

Results of applying this least-squares estimator to the affine scene in figure 19
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|
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B

Figure 18. Unskewed image of the object in figure 16.

Figure 19. Affine scene of multiple objects.

are given in table 5 and figure 20. Note that the angle between the guiding vectors
for the pliers is not as good as the others due to the handle limitation discussed

in §3d.

Back-projection is generally formulated as maximizing a function — in this
case one sensitive to the angle between back-projected guiding vectors, but un-
affected by similarity transformations. Instead of the linear constraint given in
equation (2.9), back-projection could be computed by minimizing the nonlinear
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Figure 20. Unskewed image of multiple objects of figure 19.

Table 4. Angles between guiding vectors before and after unskewing the object in figure 16

objects first symmetry second symmetry
initial angle 95.8 74.3
final angle 90.0 90.0

function f(z) = 3 cos?6; (where 6; is the skew angle between a' and b*), and
the sum includes all symmetric objects in the scene.

Combination with other constraints. If there is only one symmetry in the
image, this is only sufficient to determine the back-projection (modulo similarity)
up to a one-parameter family. However, other scene-specific information can be
incorporated to resolve the ambiguity.

A number of constraints can be put forward in the case of the hex spanner
(figure 21). For example, after unskewing, all the sides of the hexagonal head
should have equal length and the conic surrounding the hexagonal head should
be circular.

More generally, for a regular isotropic shape, like a hexagon in this case, com-
pactness, ((area)/(perimeter)?) as proposed by Brady & Yuille (1984) and Horaud
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Table 5. Angles between guiding point triplet before and after unskewing for multiple objects in
figure 19
objects spanner spoon hex spanner pliers
initial angle 76.4 97.2 81.5 94.3
final angle 89.7 89.1 89.6 88.8

Figure 21. Skewed image of hex spanner with superimposed guiding vectors.

& Brady (1988), is maximized in the object frame. The result of removing the
ambiguity by imposing equality of the hexagonal sides is shown in figure 22.

(b) Slant and tilt determination

If the camera aspect ratio is known, so that camera projection is scaled or-
thography rather than affine, then the slant and tilt of the object plane can be
determined from the ratio {a : § : v}. Quite straightforwardly, the variables
A and 7 which appear in back-projection operator (2.6) are, respectively, seco,
where o is the slant of the object plane, and tilt (with A*> = X2 so that |A| > 1).
See figure 23 and Blake & Marinos (1990).

The ratio {« : § : v} determines A up to sign, corresponding to a reflection
of the plane. Thus, slant is recovered up to the usual two-fold ambiguity under
scaled orthographic projection, i.e. o and 7 — o.

Calculated slant and tilts are given in table 6. The results are compared to: (i)
slant and tilt obtained by a method which back-projects a circle under perspec-
tive (Rothwell et al. 1992b); and (ii) approximate measurements from the camera
position. Two camera orientations are compared. Three results are given for each
orientation corresponding to different arrangements of the coplanar objects. One
representative image for each orientation is shown in figure 24.
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image

Figure 23. Slant (o) and tilt (7) angle.

(¢) Planarity tests

Suppose two symmetric planar objects are not coplanar; can this be detected
from the image? If the objects are not coplanar then equations (2.11) or (4.1)
may not have a solution. This provides a simple test for non-coplanarity which
will always be passed if the objects are coplanar (subject to image noise), but
which non-coplanar objects may fail.

The test is derived from equation (2.11) as follows. We have

1 )\2 2 2
(Gt G e D) (4.3)
X oy
Considering the A equality first, a number of constraints may be evaluated as
follows:
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Figure 24. Examples of images used to calculate o and 7 for each of the camera orientations.
For each orientation slant and tilt is recovered for three different object arrangements. Results
are given in table 6.

Table 6. Slant and tilt values calculated from symmetry back projection, circular back-projection
and (approzimate) camera position

orientation symmetry circle measured
o T o T o
figure 24 left 50 + 3 88 + 2 53 90 54
figure 24 right 41 4+3 106 £+4 47 118 44
figure 16 44 111 47 118 44

(i) for A? to be real and positive, u > 0 (from p > 0, it follows that ay > 32
or det V > 0, where V is defined in equation (2.8)); and

(ii) multiplying out gives A\* & 2,/zA 4+ 1 = 0. This only has real roots if the
discriminant g — 1 > 0, i.e. for A real, p > 1.

This defines a region for acceptable {« : # : v} solutions. If solutions do not lie
in this region then the image cannot have arisen from coplanar objects.

An example is shown in figure 25, where the hex spanner is in a different
plane from the other spanner. The calculated values of {a : # : v} and u are
{=0.793 : —0.0920 : 1} and —0.013, respectively. The above planarity-test condi-
tion demonstrates that the objects are not in the same plane.

5. Discussion

We have demonstrated that the object relation of bilateral symmetry gives rise
to image constraints that can be utilized in real applications. In particular, bilat-
eral symmetry restricts the affine transformation between corresponding image
contours to a three-dimensional subset of the planar affine group. This constraint
allows these contours to be discriminated from other affinity-related image curves.
Similar constraints can be derived for other object relations. For example, a pla-
nar object with two-fold rotational symmetry induces the following constraints
on the affinity relating corresponding image curves:

(i) A2 =1;
(ii) |A + /| = 0; and
(iii) [A — 1] # 0.
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Figure 25. Affine image of two non-coplanar objects.

and similarly for n-fold rotational symmetry (with A™ = 1).

As well as extending to other relations, the approach can be extended to the
most general planar object in image transformation — a projective transformation.
This is described in appendix B. Unlike the affine case, lines joining correspond-
ing image points are not, in general, parallel. However, the symmetry restricts
the transformation between corresponding image curves to a subset of the full
group — here to a four-dimensional subset of the plane projective group (an invo-
lution). This has an application in the recognition of objects which are surfaces
of revolution, since the two ‘sides’ of the apparent contour of these objects are
projectively equivalent to curves with bilateral symmetry. Semi-local invariants
can again be used to indicate matches, although absolute, not relative, invariants
must be used in the projective case.

Another extension is to affine images of three-dimensional objects with bilateral
symmetry. Exploiting this constraint facilitates the recovery of three-dimensional
structure and pose from single images. It can be shown that structure can be re-
covered, modulo a Euclidean transformation, to a four-parameter family of sym-
metric objects that could have given rise to the image (Fawcett et al. 1993). If the
object has two orthogonal bilateral symmetries, the shape can be reconstructed
modulo similarity.

We are very grateful for helpful comments from Andrew Blake, Ron Daniel, David Forsyth,
D. Dutta Majumder, Joe Mundy and particularly Charlie Rothwell and the anonymous refer-
ees. D.P.M. acknowledges the support of the United Nations Development Project fellowship
awarded to the KBCS Project, Indian Statistical Institute, Calcutta, India. Financial support
was provided by ESPRIT Project 6448 ‘VIVA’, and by the Science and Engineering Research
Council.

Appendix A. Proof of theorem 2.1

Suppose two image curves v and 7' are images of two sides of a planar object
with bilateral symmetry, and image projection can be represented by an affine
transformation. Then the transformation between v and «' has the following
properties.
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Property 1.~ and v are related by an affine transformation. That is, if x is
a point on +y then there is a point &’ on 7’ such that
' =Azxz+b,
where A is a non-singular 2 x 2 matrix, and b is a two vector.

Proof. The first statement is a straightforward consequence of the group-
closure property for affine transformations. Since the two sides I' and I of the
object are related by a reflection (which is affine), and since imaging is assumed
to be affine, the two imaged sides v and ' are also related by an affine transfor-
mation.

In more detail, and to fix notation, object curves I and I" are related by a
reflection, i.e. if X is a point on I' then there is a point X’ on IV such that

X' =5SX + B, (A1)
where S is a reflection matrix (|S| = —1). Under image transformation (2.4)
X=Uz+B, X =Uz'+B.
Combining these with equation (A1) gives
' =Azxz + b,
where
A=U"'SU, b=U'(SB+ Bs— B).
|

Property 2. The affine transformation {A, b} obeys the following constraints:
(i) A2 =1;
(i) |A + 1| = 0; and

(iii) |A — 1] = 0.
Proof. The first part is straightforward:
A=U"'SU
A*=U"'s*U
=Uu'u

=1

The image correspondence & < @' relates points transformed according to the
first part of the theorem. So, ' = Az + b and also x = Ax’ + b. Consequently,
applying this transformation to a point & on - maps it to a point &’ on v/, and
applying the transformation again maps it back to :

x=AAz+b)+b
= A’z + (A +1)b.
Since this is true for all  we have the following.
(i) Again A? = /. From this it follows that A has eigenvalues +1.
(ii) (A +1)b = 0. Hence, |A + I| = 0 since b is non-trivial, and b is an eigen-
vector of A with eigenvalue —1.
(iii) If  is on the (imaged) symmetry axis then @’ = Az + b = & and hence
(I—A)z=b. (A2)
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This is true for all points on the axis. Consequently, (A — /) must be of rank
one (i.e. |A — I| = 0) with the kernel of A — I defining the axis direction a, i.e.
(A —1)a = 0, which means that a is an eigenvector of A with eigenvalue 1. M

Property 8. The matrix A has eigenvectors a and b with eigenvalues +1 and
—1, respectively. Vector a is parallel to the symmetry axis, vector b is parallel
to ' — .

Proof. All that remains to be shown is that b is parallel to &’ — x. Note,
corresponding image points are joined by parallel lines since these lines are images
of parallel lines on the object. Recall that the eigenvectors of A are a and b with
eigenvalues +1 and —1, respectively. @ and b span the image, so that for some

a? ﬁ,
' —x = aa+ Bb.
Applying A to both sides, and reversing the order gives
aa — fb=Az' — Az
=z —xz
= —aa — (b,
from which it follows that a = 0, so that & — &’ is parallel to b as required. MW

Property 4. The transformation has three degrees of freedom. It can be
parametrized by a, b,,b,, where

R

Proof. Solving the equations |A + /| =0 and |A - /| =0 for A gives

A=l Ll

where a and b are two parameters. This also satisfies A2 = /. The requirement

that Ab = —b determines b in terms of a, b, and b,.
The three parameters represent the symmetry line (two degrees of freedom)
and the correspondence direction (one degree of freedom). |

Property 5. 'With this notation, the image (skewed) symmetry line is (1—a)b,
+(1+4 a)byy — byb, = 0.

Proof. This is the particular solution of equation (A 2).

Appendix B. Symmetry under projective transformations

In the most general case there is a projective (rather than affine) transformation
between object and image planes. As in the affine case, symmetry in the object
plane constrains the transformation between image curves.

Theorem B.1. Suppose two curves v and +', as in figure 2, are the images
of two corresponding sides of a planar object with bilateral symmetry. Suppose
further that image projection can be represented by a projective transformation.
Then the transformation between v and ~' has the following properties.

Phil. Trans. R. Soc. Lond. A (1995)
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Property 1. ~ and v are related by a projective transformation. That is, if ©
is a point on ~y then there is a point ' on 7' such that

' =Te, (B1)

where T is a non-singular 3 x 3 matrix, and  and z' are homogeneous three
vectors.

Property 2. The projective transformation T satisfies the following con-
straints:

(i) T? = kI, where k is a scalar; and

(ii) the fixed points of T are: a line of fixed points; and a fixed point not on
the line (through which there is a pencil of fixed lines).
A projection with these properties is a collineation of period two, also known as
a two cyclic homography, and a planar harmonic homology (Springer 1964).

Property 3. The matrix T has eigenvectors {e;, e, e3}. Two of the eigenval-
ues, corresponding to e, and es, say, are equal. The third, corresponding to e,
is distinct and non-zero. The symmetry axis is given by the line e, x es. Cor-
responding points, ' and x, are collinear with e;. The line ', x intersects the
symmetry axis at a point ®; say, and the four collinear points x, x; ' and e;
have a harmonic cross-ratio.

Property 4. The transformation has four degrees of freedom. It can be deter-
mined from two correspondences.

Proof. Property 1. This follows from group closure under projective transfor-
mations. If the object reflection is the projective transformation X’ = SX, and
the object to image projection is

‘ z=UX, ' =UX,
then the transformation between vy and +’ is given by the conjugate projectivity:
T=USU . []

Property 2.(i). We have the image correspondence <> &', so that ¢’ = Tz
and also & = Tz'. Consequently, applying this transformation to a point x on ~
maps it to a point &’ on +', and applying the transformation again maps it back
to x:

z=T(Tz) =T’z
Since this is true for all , T? = kl.

(77). This can be proved analytically but is seen most simply by considering
the projection geometry in figure 26. On the object, points on the symmetry axis
are mapped by the reflection to themselves — so this is a line of fixed points.
Correspondingly, the imaged symmetry line is a line of fixed points. The only
other fixed point (not on this line) is the point at infinity (where parallel lines
joining corresponding points intersect). In the image, this is transformed to the
vanishing point of the lines joining corresponding points. |

Property 3. For a line I of fixed points, two degenerate eigenvectors must lie
on the line. To see this, represent a point on the line as * = pe, + ves. Then

' = T(pe; +vey) = ANpey + ves),
(where e, and e; are eigenvectors of T with eigenvalue \) which is the same point.

Phil. Trans. R. Soc. Lond. A (1995)
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g
S

3

Figure 26. Under a projective transformations parallel object correspondences converge to a
vanishing point.

Thus, the symmetry line is given by e, X e3. The vanishing point corresponds to e,
the other fixed point. A similar argument to the above shows that any line passing
through this point is a fixed line under T. On the object, corresponding points are
collinear with this point at infinity (since the lines joining corresponding points
are all parallel) so in the image, ' and x are collinear with e;.

On the object, the four points, X', X, the intersection of their common line
with the symmetry axis and the point at infinity, have a harmonic cross-ratio.
This is preserved by projectivities. Hence, the four image points, &', x, e; and
the intersection of their common line with the symmetry axis, have a harmonic
cross-ratio. |

Property 4. The transformation has four degrees of freedom. These correspond
to the symmetry axis (two degrees of freedom) and the vanishing point (two
degrees of freedom). Two point correspondences, ; < @, and @, <« x;, give four
constraints:

! ! ! !
=T, Ty=Txy, xT=Tx, TL=TCT,,
which is sufficient to determine T. [ |

Projected symmetry azis. The above results provide an ‘optimal’ algorithm for
extracting the projected symmetry axis — namely determine a T which best maps
one side of the contour to the other, and compute the axis from the eigenvectors.
An alternative simple method arises by noting that any projectively covariant
construction on the object which generates points on the symmetry axis, can
be used to determine points on the symmetry axis in the image. For example,
find corresponding pairs of distinguished points on each side of the outline, say a
corresponding to a’, b corresponding to b’. Then line pairs {ab’,a’b} and {ab, a'b’}
both intersect on the symmetry axis. These two intersections determine the line.
In the absence of measurement noise both the ‘optimal’ and simple method will
produce the same line.
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igure 1. Examples of skewed symmetry. The objects differ in the number and disposition of the
rmmetry axes: (a) each object has a single bilateral symmetry; (b) the object has two orthogonal
ilateral symmetries; and (¢) the object has three bilateral symmetries, but the symmetry axes
re not orthogonal. In each case the symmetry is global, and on the object lines between points
slated by the reflectional symmetry are orthogonal to the axis of reflection. However, in the
nage these lines and the axis are not orthogonal, in general, but skewed.
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Figure 6. Image of four objects with bilateral symmetries.
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Figure 8. Affine view of symmetric spanner.
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igure 11. Affine scene of globally, partially and non-symmetric objects.
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igure 12. Outline curves, concavity entrance and exit point for the objects in figure 11.
ymmetry lines are only drawn where the object is determined to be globally symmetric.
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igure 14. Affine view of two objects with superimposed guiding vectors. The vectors are
clearly not perpendicular.
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igure 16. Afine image of an object with multiple local symmetries.
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igure 17. Local symmetries and matching concavities extracted from figure 16. Note that
local symmetries considered are neither parallel nor perpendicular.

PHILOSOPHICAL
TRANSACTIONS
OF



http://rsta.royalsocietypublishing.org/

Y ALIIDOS (omassnval Y/ ALIIDOS

VvV TVAOY dH.L 1vDIHJOSOTIHd V 1TVAOY4 IHL

Figure 19. Affine scene of multiple objects.
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igure 21. Skewed image of hex spanner with superimposed guiding vectors.
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igure 24. Examples of images used to calculate o and 7 for each of the camera orientations.

or each orientation slant and tilt is recovered for three different object arrangements. Results
‘e given in table 6.
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Figure 25. Affine image of two non-coplanar objects.
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